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The problem of the existence, stability and bifurcation of the steady motions of two bodies in an orbital tethered system, when 
one of the bodies is a symmetrical satellite with a rotor on the axis of symmetry, is considered. One-parameter families of steady 
motions are indicated, and their stability and bifurcations are investigated. The conditions which relate the parameters of the 
system for which stabilization of the families obtained is possible using a rotating rotor are obtained. © 2005 Elsevier Ltd. 
All rights reserved. 

A considerable number of models of systems of several tethered bodies in a central Newtonian 
gravitational field (point masses on a rod or connected by a weightless thread, a point mass and a rigid 
body, a flexible heavy thread, and a system of several rigid bodies with different forms of coupling) have 
been proposed in the literature, as well as models of the forces acting on such a system (aerodynamic, 
magnetic, light pressure forces and their combinations). Restricted and unrestricted formulations of 
the problem have been investigated (see, for example, the monographs [1-11]). For the system considered 
below, which is a special case of a more general system [11], the additional symmetry of the problem 
leads to the existence of steady motions, which are impossible in the general case. 

1. FORMULATION OF THE PROBLEM 

Consider a mechanical system, consisting of a pair of rigid bodies, connected by a massless absolutely 
solid rod by means of two spherical hinges, in a central gravitational field. We will assume that one of 
the bodies moves uniformly in a circular Kepler orbit, unperturbed by the motion of the other body, 
which is dynamically symmetrical and carries a rotor which rotates around its axis of symmetry with an 
angular velocity that is constant with respect to this body. 

We will assume that one of the end points of the rod - point A - moves in a circular Kepler orbit of 
radius R around an attracting centre N. Suppose AXaX~Xr is an orbital system of coordinates, the unit 
vectors of which oL, 13, ~/are directed along the tangent to the orbit, along the normal to the orbital 
plane and along the radius vector NA (NA -- R'y), respectively, while ~ is the modulus of the orbital 
angular velocity. Suppose the second end B of the rod of length l is fixed in a gyrostat, AB = lp, where 
p is also a unit vector. Suppose the centre of mass of the gyrostat G lies on its axis of symmetry at a 
distance a from the suspension point. Then, the radius vector r of the centre of mass in absolute space 
can be represented in the form r = R~/+ lp + as, where s is the unit direction vector of the axis of 
symmetry, fixed in the gyrostat. We will denote by f2 the value of the angular velocity of the rotor relative 
to the gyrostat, by J its axial moment of inertia, by K = Jf~ the value of the natural angular momentum 
of the rotor. 

We will introduce a system of coordinates Gxlx2x3, connected with the gyrostat, with axes which 
coincide with the principal axes of inertia of the gyrostat. Henceforth, all vector quantities will be 
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projected onto this system of coordinates. When l + a ~ R, we can use the following approximate 
expressions for the gravitational potential 

u = - f R M ( 1 - 2 (  ~l+Ip+as'lp+as~+2R 2-R" J ~ ( " ~ - ~ ) 2 ) -  

2~(2A + C -  3(I¥, ¥)); ! = diag(A, A, C) 

where I is the inertia tensor of the body. We will assume that C ¢ A. 
The equations of motion of the gyrostat have the form 

m v  = - m ( ~ [ ~  x r)  - mco x (v  + ~ p  x r)  + OUIOr - T p  

Kg = -co X Kg-aTs x p + r x OU/Or 

I~=-co°xP, y=-coxy+gpx¥ 

Ip = _coo x ( lp  + a s )  + v 

where 

Kg = / c o + K ,  co = c o ° + ~ [ I ,  K = ( 0 , 0 ,  K)  

Here v is the velocity of the centre of mass of the gyrostat, o~ ° is the natural angular velocity of the 
gyrostat, I~ is its angular momentum, K is the angular momentum of the rotor and T is the reaction 
of the rod. 

The equations of motion allow of the following five first integrals 

1 .2  2 1 .2  ~mvl 2 + ~(Icol o, coo) - ~ r n ~  ( ~  x r)  - ~ V  ( I~ ,  ~ )  - (K,  ~ )~ t  + U = h 

(Kg, S) = k, F 1 = I~ 2 = 1, F2 = y2 = 1, F 3 = (y ,  1~) = 0 

These integrals express the generalized law of conservation of energy, the law of conservation of the 
projection of the angular momentum onto the x3 axis (this integral only exists in the case of a symmetrical 
gyrostat), and also the uniqueness and orthogonality of the vectors 13 and ~/. It is also assumed that the 
condition for the rod to be undeformable 

2 
F4=  p = 1  

is satisfied. 

2. TRIVIAL STEADY MOTIONS AND THEIR STABILITY 

The steady motions of the system correspond to the critical points of the function 

W n = - ~((I1$, 1~) - rn([~, lp  + a s )  2) - (K,  1~)~-1 + 

+ ~ ((I¥, ¥) - m(¥, lp + as) z) + (C~[~32C~t 2- k)2 + 

3 2 1 2 + 3~,(¥,  I~) + v( l~  2 -  1) - ~ o ( ' /  - 1) + ~ z m l ( p  - 1) 

where L, v, ~ and )~ are undetermined Lagrange multipliers. The system of equations for finding the 
critical points of the function W~ allows of the following one-parameter families of solutions 
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2 SI: ~ --- ( 0 ,  0 ,  - K 2 ) ,  0 = ( 0 ,  0 ,  -1£1)  , 73 = 0 ,  7~ + 72 = 1 

6 = A, ~, = 0, Z =-~Z1(/K l + a )  

v = - m( l*q  + a) 2 - (K + k)~-11<2 

$2: ~ = (0,0,-1Q, P3 = a/ l ,  p~+p2 = l _ a 2 / l  2 

73 = 0 ,  7~+7~ = 1,  7 1 P l  + 7 2 9 2  = 0 

= A, ~, = 0, Z = 0, v = -(K+k)~t-l~¢, ~ = 1~1, 2 = +1 

The solution $1 exists for any values of the parameters, and geometrically it indicates that the points 
A ,  B and G lie on one line, collinear with the vector [3 (i.e. orthogonal to the orbital plane of the 
pointA).  

The solution $2 only exists when a < l, which means that the centre of mass of the gyrostat moves 
in the same circular orbit as the point A, its axis of symmetry is orthogonal to the orbital plane of the 
pointA, and the rod is stress-free. In both cases the gyrostat rotates uniformly around its axis of symmetry 
with an arbitrary angular velocity. 

An investigation of the stability of the steady motions defined by the solutions $1 and $2, with respect 
to the second variation of the function W~ on the linear manifold 5F = (5F1, 5F2, 5F 3, 5F4) = 0 gives 
the following results. 

Consider the solution S1. We introduce the dimensionless parameters 

11( 1 + a mcl A-~ 
c = ll~ 1 + a,  P - l ' q = --A'-' x = - 1  - p q - . - ' - r ( K +  k)  

C _ p q _ 5 p q + q  
r = ~,  M 0 = r - 1  p - 3  ' M = - 2 q + 3 M  0 

We put ~:1 = -1 and suppose M0 < 0. On the basis of the general theory (see, for example, [12]) the 
degree of instability of the solution $1 can be represented in the form of the following table 

x > - M - q  

p>3  0 
p~ (0,3) 1 

p<0  2 

x e (q, - M -  q) x<q 

If M0 > 0, then q and -M - q change places. 
Consider the case ~:1 = 1. If M0 < 0, the degree of instability depends on the parameters as follows: 

x>-M+q Ixe  (-q'-M+q)] 3 4 

If M0 > 0, --q and -M + q change places. 
Hence, a change occurs in the degree of instability at the nodes of the table and, consequently, 

bifurcations of the solution $1. Note that the angular momentum of the rotor is expressed linearly in 
terms of x and ~:2, which enables us to rewrite the inequalities in K or f~ easily, taking the sign of ~2 
into account. 

The degree of instability of the solution $2 is distributed as follows. Suppose 

x = - 1 - 
2 

A ( K + k ) ~ - l  p2 1 a C 
l 2' A 
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Then,  as before,  we have 

C>A x < - 3 ( r - l ) 3  x e  (-3(r-1),0)2 x>01 

If  C < 1, then  0 and -3 ( r  - 1) change places. 
It  can be seen that  when  x = 0 and x = -3 ( r  - 1) a change occurs in the degree  of instability and, 

consequently,  branching of  the solutions occurs. Note  that, as in the case of  the first family, the degree  
of  instability depends  on the direct ion of ro ta t ion  of  the rotor .  Taking the expression for  x into account,  
as in the case of  the first family we can rewri te  the condit ions of  stability of  the solution $2 in the fo rm 
of  inequalit ies in the angular  m o m e n t u m  K or the angular  velocity of  the ro tor  f~. 

3. N O N - T R I V I A L  S T E A D Y  M O T I O N S  

The  system for  de termining the critical points  of  the funct ion W= can be rewri t ten in the following 
(dimensionless)  fo rm 

1 - 6 9~ 1% Yi 

33. v - 1  Ic~ [3~ = 0, i = 1,2 (3.1) 

-3ow~ ~Cl3 Z ~p/  

( r -  ~)]/3 + ~1~3 -- Ic~(~P3 - 1) = 0 

3~.]' 3 + VI~ 3 + ICl3(0~p3 -- 1) = X 

- 3~c7]t 3 + ~C13~3 + X(~O3 -- l )  = --Z 

2 2 2 
y = 1, ~l = 1, p = 1 ( y , [ ~ ) = O  

C 7 = ~] / lPl  + O~y292 + ] / 3 ( a P 3 -  1) 

Cl3 = ~ l P l  + 0~11292 + ~]3(~P3 - 1) 

H e r e  we keep  the old no ta t ion  

2 -1 
Z, ma l (K + k)¢¢ V 9~ - I =  ~ = - ,  x -  

~ = ~ ,  v = ~ ,  ~ , =  ~ ,  Z = a "-~-, a A 

as the new dimensionless  variables.  
I t  can be seen that  if 71, 2, [~1, 2, Pl, 2 satisfy Eqs (3.1) and at least one  of  t hem is not  equal  to zero,  

the rank  of  the matr ix  

D = 

1 - ~ ~, 1% 

33, v - 1  Icf~ 

-3otc v otc~ Z 

must  be  less than three.  Hence ,  we can consider  the case when  rankD is equal  to 0, 1, 2 and hence  find 
the s teady solutions. We denote  the rows of  the matr ix  D by db  d2 and d3. 

We will consider  the case when  rankD < 1. 
Suppose  dl  = 0 and d 2 = 0. Then  c = 1, 9~ = 0, v = 1, cv = 0, c~ = 0. The  system of  equat ions  takes 

the fo rm 

7~Pl = O, XP2 = 0 ( r - 1 ) ) '  3 = O, 1~3 = x, Z ( o t P 3 - 1 )  = -7~ 

2 l~2 2 
y = 1, = 1,  p = 1 ( 7 , 1 ~ ) =  0 
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Note that, when analysing it, it is necessary to take the relations cv = 0, c[3 = 0 into account. If g e 0, 
we obtain p = 0, which contradicts the condition p 2 = 1. If ;( = 0, we obtain the solution 

S3:t~ = 1, ~, = 0, v = 1, Z = 0, ) ' lPl+]t2P2 = 0 

2 2 
Tl+y2  = 1, T3 = 0, 111pl+11292+x(ap3-1) = 0 

~ + ~ = l - x  2, 113=x,  1]1'~1+112]t2 = 0 ,  I ) 2 = 1  

Geometrically, the solution $3 denotes that the centre of mass of the gyrostat moves in the same 
circular orbit as the pointA, while its axis of symmetry is inclined at a certain angle in the plane tangential 
to the orbit at the point G. 

It can be seen that whenx = _+ 1 this solution is identical with the solution $2. Hence, we have obtained 
one of the solutions which branches from $2. 

We will determine the limits of the parameters of the system for which the solution $3 exists. It can 
be shown that the coordinate P3 can be expressed as follows: 

2 
P3 ---- X__4" J ( I - x 2 ) ( 0 ~  2 - x  2) 

(t 

Taking into account the requirement that the radicand must be positive and that the inequalities 
-1 < 113 < 1, -1 < P3 < 1 must be satisfied, we obtain the following limits that are imposed on the 
parameters x and a 

X2-- < 1, X2-- (Z2_< 0 

The stability of the solution $3 depends on the parameter R = (C -A)/(ma2), namely: if R < 0, the 
degree of instability of the solution $3 is equal to 1 (the solution is unstable), and i fR > 0, the degree 
of instability is equal to 2 (gyroscopic stabilization is possible). When x e 1 bifurcation does not occur. 

We can similarly consider other cases when at least one of the rows of the matrix D is zero and 
rankD = 1. In this case we obtain two other families of steady motions ($4 and $5) 

2 2 X -- ~:Itz 
$4:3t1+72 = 1, T3 = 0, I i = -~ :9 ,  113 - 1 + I  

EX+(X KX+( l  
= O, E = O, v = 1 - I ( x  l + I '  X - l + I  

(when x = rdo¢ _+ (1 + I )  this solution is identical with the solution $1; geometrically the solution S 4 
denotes that the rod is perpendicular to the orbital plane of the pointA, while the axis of symmetry of 
the gyrostat is inclined in a plane tangential to the orbit at the point A) 

( / x x 2 

s , :  = ( 4 - 3 r )  2, 73 = ~ 1 (4_---~r)2) 

2 
+ 6 .  = 1 x x 

( 4 - 3 r )  2' 113 4 - 3 r  / 1  

2 2 1 1, ( 4 -  3r) 2 
Pl + P2 = 1 -  (t 2 ' -  [03 = ~ 9~2 = x7 - 1  

~, = 3 g ( r -  1) 3 ( r -  1) 992(r - 1) 
l + 9 g  2 , X = 0, v = 1 2' 6 = 1+ 

1 + 9g 1 + 9g 2 

When x 2 = (4 - 3r) 2 this solution becomes the solution S 2. The solution $5 denotes that the centre of 
mass of the gyrostat moves in the same circular orbit as the pointA, and its axis of symmetry is inclined 
in a plane passing through the radius vector of the point A and perpendicular to the orbital plane. 
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4. C O N C L U S I O N  

Hence, we have obtained all the solutions which branch from the solution $2, and one of the solutions 
which branches from Sv The case when all three rows of the matrix D are proportional, and also the 
case when rankD = 2, lead to a complication of the calculations, and their investigation is not so trivial. 

We will briefly formulate the main results of this paper: we have obtained the two simplest families 
of steady motions and the conditions for them to exist, we have investigated their stability with respect 
to the variable characterizing the deviation from these families, and we have found the dependence of 
the degree of instability on the geometrical and inertial parameters, i.e. the impossibility of stabilizing 
the solutions by a rotating rotor when the conditions imposed on these parameters break down, and 
we have found bifurcation of the steady motions. We have obtained all the solutions which branch from 
$2, we have investigated the stability of one of them, we have noted that there is no bifurcation when 
the parameters change, and we have also obtained one of the solutions which branch off from $1. We 
add that cases with a non-zero even degree of instability require additional investigation. 
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